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Abstract 

Poultry litter is a key factor that effects broiler (meat chicken) production because it can 

harbor pathogenic bacteria. Windrowing, which is akin to in-house composting can improve 

poultry litter quality and limit pathogen growth by heating and drying the litter between flocks. 

Generally, broiler producers manage windrowing to reach high peak temperatures as fast as 

possible, to reach efficiently pathogen control standards. Biochar, a carbon rich byproduct of 

biomass energy production, has the potential to improve windrow heating performance by 

facilitating higher peak temperature and heating rate. In this study, two sources of biochar as 

litter amendment prior to windrowing, Proton Power biochar and City of Lebanon biochar. 

Pathogen control standards were 122 ℉ for 24h or 145℉ for 1h, under these standards the 

pathogens in litter can be destroyed. For the farm scale part of this study, windrow heating 

performance was monitored in two paired commercial broiler houses, one that received 4000 

lbs (1815 kg, dry weight, about 1% of litter in house) versus a control house that did not receive 

biochar. There was no significant difference in the peak temperatures attained during 

windrowing in the control and biochar amendment houses. For all treatments, the litter at mid-

depth and floor positions of the windrow can reached ≥122 ℉ for 24h, in the Turn 1 and Turn 

2; only the mid-depth position can reached ≥145 ℉ for 1h at mid-depth, in the Turn1 and Turn 

2. The surface position had poor heating performance, did not reach either standards. In the 

second part of the study, a bench scale experiment was performed to evaluate the effectiveness 

of two biochars in simulative windrow heating at 1%, 5%, and 10% (dry mass based) 

amendment rates. In this experiment, the litter moisture was adjusted to 36% during the second 
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simulative windrow turn. Compared to the non-biochar added control, the biochar again 

showed no improvement of heating performance. However, the added moisture significantly 

improved windrow heating in second simulative windrow turn. The bench scale study also 

illustrated that moisture is a key determinative factor in windrow heating performance.  

 

Key words: poultry litter windrowing, heating performance, biochar application, mixture 

moisture. 
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Chapter 1. Introduction 

Antibiotics have been used by the poultry industry to improve broiler (meat chicken) 

production worldwide since the 1940s. The attitude towards the use of these antibiotic growth 

promoters (AGPs) for poultry production has changed because of concerns about the rise of 

antibiotic resistant bacteria. Bacterial antibiotic resistance is a rapidly developing threat 

worldwide which already reduces treatment options and therapeutic efficacy in human 

medicine [1, 2]. It is a big challenge for the poultry industry to find alternative ways to control 

pathogenic bacteria during production while maintaining current feed conversion efficiency.  

Poultry litter is a mixture of poultry waste and used beddings, that can harbor pathogenic 

bacteria. Many poultry producers in Tennessee are transitioning to windrowing litter within the 

production houses between grow-outs to improve poultry litter quality. Windrowing is a litter 

management that uses heat released by microorganisms during the degradation of organic 

material to reduce pathogenic bacteria and dry the litter between flocks (Lavergne et al., 2004). 

High performance windowing could ameliorate the impact of broiler production without 

antibiotics. 

The research goal is to improve windrow heating performance. Biochar has been used as 

an amendment in biosoilds composting. Researches had indicated that biochar amendment 

accelerates microbial activity and increases the temperature during biosoilds composting [3-5]. 

Therefore, biochar might have the potential to improve windrow heating performance. 

However, biochar has not been tested as a poultry litter amendment for improved windrow 

heating performance. The objectives of this research are: 
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1. Evaluate biochar effects on windrow heating performance 

2. Investigate the key factors effect windrow heating performance 

3. Improve windrow management  
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Chapter 2. Literature Review  

2.1 Antibiotics in broiler production 

2.1.1 Transition of the antibiotic free broiler production 

Antibiotics are commonly used during poultry production. Antibiotics likely remodel 

microbial diversity in the bird’s intestine which optimizes feed efficiency [6], and also 

controls gastrointestinal infections [7, 8]. Antibiotics usage in poultry feed improve food 

safety by reducing or eliminating certain pathogens in poultry meat [9] and improves the feed 

conversion ratio [10, 11]. The growth-promoting effects of antibiotics were discovered in the 

1940s, when chickens were first fed feed containing antibiotics [12]. Certain types of 

antibiotics, known as antibiotic growth promoters (AGPs), destroy or inhibit intestinal 

bacterial growth when administered at a low sub therapeutic dose [13]. Chickens that receive 

AGPs in feed exhibit higher growth rates than chickens that were not fed feed containing 

antibiotics. As a result, broiler production changed dramatically from 1955 to 1995: the 

average market weight of broilers increased nearly 50%, while the time needed to reach 

market weight and the amount of feed required to produce one pound of broiler meat declined 

35% [14, 15]. Although these effects might be in part caused by the improvements in poultry 

house management and selective breeding. It has been asserted by industry researchers that 

AGPs remain an essential component in maintaining these increases in productivity, which 

have markedly decreased cost of chicken meat [16]. Between 1950 and 1960, the use of 

penicillin increased broiler body weight by ~8.5%, while tetracyclines increased body weight 
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by ~11% [17]. From 1968 to 1980, broiler body weight increases were found to be 11% for 

penicillin, 8%–10% for the tetracyclines, and 4%–7% for certain “new” antibiotics [18].  

However, studies have shown that the use of AGPs contributes to the contamination of 

livestock products by selecting for antibiotic resistant pathogens, including Campylobacter, 

Salmonella, Enterococcus and E.coli. Antibiotic resistance has been a concern for several years. 

Antibiotic resistance is defined as the ability of microorganisms to proliferate in the presence 

of an antibiotic that generally inhibits or kills microorganisms of the same species [19]. The 

development of antibiotic resistant pathogens increases risks of human infections by these and 

other resistant pathogens that cannot be easily treated [20, 21]. Moreover, the residue of 

antibiotics in food production may have an adverse impact on human health, because bacteria 

developing resistance in animals may be transmitted to humans or spread their mechanisms of 

resistance [22]. 

Many countries now demand that poultry be produced without feed containing 

antibiotics. The European Union banned the use of antibiotics as growth promoters in animal 

feed from 2006 [23]. In addition, in January 2017, the United States Food and Drug 

Administration fully implemented Guidance for Industry #209 and #213 which prohibits the 

use of all AGPs that are medically important [24].  

2.1.2 Potential challenges in removing antibiotics from broiler production  

The demand for poultry meat is increasing. The United States has the largest broiler 

chicken industry in the world, with about 16.5 percent of production exported to other 

countries in 2017 (National Chicken Council, 2018). A further increase of 2.3 percent to 42.6 
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billion pounds is predicted for 2018, with the bird weights trending higher [25]. The large 

demand and scale of broiler production make transitions to production without antibiotics 

difficult to manage particularly for performance issues such as morbidity, uniformity, and 

maintaining current feed conversion efficiency after the AGPs ban. The main challenge faced 

by producers after removing AGPs are undoubtedly related to intestinal health, specifically, 

the Necrotic enteritis (NE) [26]. Removing antibiotics feed additive is also certain to cause 

problems in control of other bacterial as well as [27]. It is critical to find alternative to AGPs 

to control bacteria pathogens in chicken production to prevent disease. 

Additionally, the ban of AGPs, will increase cost for production, by lowering feed 

conversion efficiency. The National Research Council accepted industry estimate and 

concluded that a 1.76% increase in poultry production costs would arise from the removal of 

AGPs, resulting in an increased cost to consumers of $2.20 per capita per year. A similar 

estimate estimated the increase cost for chicken product will be $1.36 to $2.76 per capita 

[27]. Thus, though the policy to prohibit AGPs is well founded, this action will likely 

increase cost and thus the environmental impact of poultry production. 

2.2 Windrowing 

2.2.1 Alternative to antibiotic growth promoters  

Pathogens control is the main target to limit the impact of AGPs ban. Most pathogens 

spread during broiler production through litter, which contains a large and diverse microbial 

population, up to 1010 CFU/g [28], including some pathogens, such as Staphylococcus, E. coli, 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/morbidity
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/feed-conversion-ratio
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Salmonella, and Campylobacter [29]. Poultry litter is a mixture of poultry excreta, spilled feed, 

feathers, and used bedding on which poultry grow [30]. Litter quality has a significant impact 

on bird performance. Multiple flocks of birds are commonly reared on the same litter in the 

modern poultry industry [31]. Poor quality litter has excess moisture and increased disease 

outbreak. Broilers are sensitive to the in-house environment, including ammonia concentration 

and bacterial exposure, which are highly dependent upon litter quality [32]. Improving poultry 

litter quality is the key to improve broiler production. 

Windrowing is a litter management technique that use tractors, skid-steer loaders, or 

specially designed aeration equipment to pulverize and form litter into one or multiple 

windrows in a poultry house [33]. The windrowing technique uses heat released by 

microorganisms during the degradation of organic material to reduce pathogenic bacteria and 

dry the litter between flocks (Lavergne et al., 2004). Through windrow composting, total 

aerobic bacteria and total anaerobic bacteria are reduced by 10-30% and 60-80%, respectively, 

and dermatitis and necrotic enteritis are eliminated [33]. This suggests that high performance 

windowing could control pathogens in broiler litter instead of antibiotics. 

2.2.2 Pathogen reduction standards 

There is no established pathogen reduction standard for in-house windrowing of broiler 

litter between flocks. Previous studies generally used two ways to evaluate pathogen 

reduction, microbial analysis and temperature monitoring. Microbial analysis was mainly 

focus on the category and concentration of pathogen bacteria in the litter, like E. coli, 

Salmonella, and Campylobacter. And the common methods were cell counting [29] and DNA 
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sequencing [34]. Microbial analysis is not practical for commercial poultry producers. 

Temperature monitoring is commonly used as a practical tool for determining the 

effectiveness of composting pathogen destruction [35]. Suggested windrow heating standards 

have mainly been based on the pathogen reduction requirements for biosoilds composting in 

the US Environmental Protection Agency’s (UEPA) 503b Rule. Specifically, when sewage 

sludge is composted in windrows, the temperature must be maintained ≥ 131°F (55℃) for 15 

days, during which time the windrow must be turned a minimum of 5 times [36]. Many 

studies have confirmed that temperature is critical in the pathogen reduction process. For 

example, Wilkinson et al. (2011) found a reduction of E. coli of more than 99% after 1h at 

131°F in laboratory experiment. Macklin et al. (2006, 2008) confirmed a significant decrease 

of Salmonella and other food borne pathogens after 24h at 131°F. Strauch, 1991 summarized 

a safe zone of pathogen reduction standards, and it suggested certain short time standards of 

pathogen control temperature, 122°F for 24h or 145°F for 1h. 

Windrow turning is one of the composting strategies that control temperature during 

composting [37]. Different temperature distributions is shown in different depth during 

windrowing[38]. The temperature of the surface position usually appears to be influenced by 

the ambient temperature and has low temperature than mid-depth and floor [39]. Studies 

proved that frequent turning could improve homogeneity of the litter [40, 41]. Therefore, in 

order to treat all the litter, the windrow must be turned to allow the litter on the outside to be 

mixed into the core (kill zone) where the temperature is reach pathogen reduce standard 

(Figure.1). 
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The purpose of turning the windrows is to assure that all the litter in the windrow is heated to 

131°F because the surface temperature is often not hot enough to kill microorganisms. 

 

2.2.3 Challenges of in-house windrowing of broiler litter  

The need to attain sufficiently high temperatures for an extended period is critical for in-

house windrowing of broiler litter between flocks, if AGPs will no longer be used. To get 

efficient composting, the moisture content should be maintained between 40% and 60% during 

the composting process [42]. Thus, for in-house litter windrowing, most litter has a lower 

moisture content than what is required for optimal heating during windrowing. Another 

challenges is the relatively short downtimes between broiler flocks, which necessitates a short 

period (10-14 days) or successful windrowing. [43]. Finally, high performance composting 

Beginni Several turns End 

… 

Kill zone ( generally temperature >131°F) 

Litter exposed to pathogen control temperature 

Litter not reached by the pathogen control temperature 

Figure 1.The windrow turning event mechanism.  
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requires a C/N ratio of approximate 30:1 [44]. Thus, the low C/N ratio of broiler litter may 

have a negative influence on a successful pathogen reduction and may also contribute to large 

ammonia emission [45].  

2.2.4 Potential methods to improve windrow heating improvement  

A variety of windrowing methods have been tested to evaluate the most effective 

windrowing techniques and the optimal litter conditions. However, few of the tested methods 

showed an improvement of windrowing performance. For example, to prevent heat dissipation 

at the surface and improve uniformity of temperature distribution various insulating covers 

have been recommended. Use of 30-cm finished composting litter as a covering layer 

significantly improved the heating performance at all locations [46]. A plastic covering is one 

technique developed by Brazil poultry industry where researchers found that covering the litter 

with plastic for seven days after watering the litter reduced the presence of Salmonella spp. in 

reused litter [47]. In other studies, a plastic windrow covering did not show advantages. For 

example, windrows covered with a non-breathable tarp did not reach the recommended 

temperatures necessary to achieve an effective pathogen reduction [31].  Covering windrowed 

litter with a PVC plastic sheet had no effect on improving the broiler house environment and 

instead increased ammonia concentrations [48].  

Other researchers have attempted to improve windrow heating performance by adjusting 

the moisture content of the litter. For example, elevated initial moisture (36 ~ 37 %) ensured 

adequate pathogen control temperatures were attained. However, increasing the initial 
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moisture may decrease the workability of litter and results in wetter litter than desired for the 

next flock [49].  

2.3 Biochar 

Biochar is a carbon-rich product with high adsorption potential that is derived from the 

thermal breakdown of plant biomass, organic waste, or even algal biomass under limited 

oxygen or anaerobic conditions [50]. The International Biochar Initiative (IBI) standardized 

its definition as “a solid material obtained from the thermochemical conversion of biomass in 

an oxygen-limited environment” (IBI, 2012).   

 Biochar has the potential to improve composting (windrowing) performance and reduce 

ammonia concentrations during broiler production. Compared to the other commonly used 

amendments, biochar may have significant advantage in enhancing windrow heating 

performance. It was found that biochar: (1) increased temperature and reduced the time of 

composting (Table.1), (2) reduced ammonia emissions, (3) changed microbial 

community structure, (4) enhanced faster decomposition of organic matter, and (5) improved 

the quality of biochar-blended composts from poultry manure, including chemical 

composition, water holding capacity, nutrient retention, etc.  

  

https://www-sciencedirect-com.proxy.lib.utk.edu/science/article/pii/S0045653513015051#b0215
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/decomposition-of-organic-matter
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 Table 1. A summary of the effects of biochar amendment on compost heating performance 

NA means not mentioned detail of biochar type in the reference.  

The all biochar dose were based on wet weight. 

  

Biochar Compost Ingredients 

Biochar 

Dose 

Effect on peak 

temperature Reference 

NA 

Tomato stalk,  

1% +13% Wei et al. 2014 chicken manure 

Wood  Poultry manure, 

  
Jindo, Suto, et al. 

2012 10% +7% 

Bamboo sawdust (30% wet 

weight) 

 

+5~10% 

 

 

Chen et al. 2017 

 

Steiner et al. 2010 

Wood  

Manure   

Coir     

Pine chips Poultry litter, 20% 

NA  poultry manure 5% Increase temperature  

NA 

 

 wheat straw,    
Czekała et al. 2016 

 pig manure  5% 

Bamboo 
 wood chip and 

sawdust 

60 kg/ 

ton 

Shorter maintain 

period 
Wang et al. 2013  
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The properties of a specific biochar vary according to feedstock and treatment 

temperature [51, 52]. The biochar made by animal litter and solid waste may have higher 

inorganic constituents (ash) compared to the biochar from crop and wood biomass [53, 54]. 

With the same feedstock, the biochar surface area increases when the treatment temperature 

is increased [55]. Thus, different biochars may have different effects on litter windrowing 

because of the variable properties.  
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Chapter 3. Windrow heating study 

3.1 Introduction 

Litter is a mixture of poultry manure, used bedding (wood shavings), spilled feed, and 

feathers; litter quality is the key factor that affects broiler health and broiler production 

efficiency. Broiler producers, farmers that grow meat chicken from chicks to harvest, have 

begun to practice in-house litter windrowing to improve litter quality. Windrowing is a litter 

management technique that use tractors, skid-steer loaders, or specially designed aeration 

equipment to pulverize and form litter into one or multiple windrows in a poultry house 

(Malone, 2008) During windrowing, pathogenic bacterial populations in broiler litter can be 

reduced [56-58]. Past research has confirmed that temperature can be used to assess the 

windrowing performance in regard to pathogen reduction [59-61]. Past research with 

biosolids which indicated that a temperature of 122℉ for 24h or 145℉ for 1h, will destroy 

pathogenic bacteria during composting [62]. However, it is critical for in-house windrowing 

to obtain high heating performance standards. The challenge of heating performance in farm 

scale are the relative low moisture content (20-40%), low C/N rate (lower than 25/1), and 

limited time (less than 15 days). 

Biochar was selected as an amendment because past researches indicated that it accelerates 

microbial activity and increases the temperature during biosoilds composting [3-5]. Therefore, 

biochar might have the potential to improve windrow heating performance. Biochar has not 

been tested as a broiler litter amendment to enhance windrow heating performance. A wide 

range of biochar application rates to compost have been tested, from 5 % to 50% (wet mass 
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basis). At adequate doses, biochar has been found to increase temperatures and shorten the 

overall time requirement for adequate heating [3, 4]. Here we present an evaluation of whether 

biochar amendment can improve in-house windrow heating performance. The research 

objectives are 1) evaluate biochar effects on windrow heating performance; 2) investigate the 

key factors effect windrowing 

3.2 Materials and Methods 

3.2.1 Farm scale windrowing  

This research was conducted on a commercial broiler production farm, located in southeast 

TN, in two paired houses (55ft x 500ft or 17m x 152m). The paired houses received the same 

chicks from the same hatchery. The broiler houses were divided into Brood and Grow ends. 

The Brood end was used to rear birds until approximately 7 days of the growout, and received 

sodium bisulfate acidifier (≈75 lbs/1,000 ft2, or 34kg/94m2 of Poultry Litter Treatment; Jones 

Hamilton, Walbridge, OH) 36 hours prior to the beginning of new flocks. The Grow end was 

occupied by the flock after the brooding process was completed (after 7 days) and did not 

receive acidifier.  

Windrows were formed after birds were harvested from the production houses using a 

KMC mode 641D windrowing machine, which was Power takeoff driven by a 95 HP New 

Hollard TN9S low profile tractor. In each house, 4-5 windrows were typically formed and ran 

the full length of the production houses. A total of four times of windrowing events were 

monitored between flocks, each with 2 to 3 turns. The initial windrow was referred as Turn 1, 

and typically lasted 5 to 7 days, prior to forming new windrow (Turn 2); after an additional 3 
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to 5 days, the finial windrow (Turn 3) was formed after an additional 3-5 days the windrows 

were leveled to prepare the house for a new flock. 

Table 2 summarizes the house treatments. Two houses received two different biochars 

(Table 3), Proton Power biochar (PP biochar) and City of Lebanon Biochar (CL biochar). In 

each biochar treated house, 4,000 lbs biochar (dry mass) was added directly to the top of litter 

prior to 4 new flocks. Table 3 shows the properties of two biochars used in this study. City of 

Lebanon biochar (CL biochar) and Proton Power biochar (PP biochar) are used in this 

research as amendment. 

Temperature sensors (Model UA-002-64; Onset Computer Corporation, Bourne, MA) 

were installed in windrowed litter to record temperature throughout the windrowing process 

(10 sensors per house). The temperature sensors were set at three depths along the vertical 

centerline of the windrow profile (Figure 2). In each house, half of the temperature sensors 

were installed in the Brood, and the remaining five sensors were installed in non-brood end. 

In each end of the house, 2 sensors were installed within 0-2” of windrow interface with the 

floor (compacted soil) in two different windrows; 2 sensors were at the mid-depth of 

windrows; and 1 sensor was installed 0-2” below litter the surface. 
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 Table 2. Windrowing treatments in four test houses 

Growout 1, 2, 3, and 4 presented the four times of windrowing events between flocks. 

The dose of biochar added rate was based on the 1% dry mass. 

Based on the results in the first two Growouts, the times of turning events reduced at 

Growout 3 and 4.  

 

Table 3. Properties of City of Lebanon biochar and Proton Power biochar used in this study. 

TC means total carbon content; TN means total nitrogen content; PV means the pore volume. 

BET is a theory that explain the physical adsorption of gas molecules on a solid surface and 

serves as the basis for an important analysis technique for the measurement of the specific 

surface area of materials [63].  

 

  

Test 

House  Biochar type 

Dose 

/lbs 

Times of turn in each Growout 

Growout 1 Growout 2 Growout 3 Growout 4 

House 1 Control 0 3 3 2 2 

House 2 CL biochar 4,000 3 3 2 2 

House 3 PP biochar 4,000 3 3 2 2 

House 4 Control 0 3 3 2 2 

Characteristics CL biochar PP biochar 

Moisture content (%, wet basis) 54.1 ± 2 9.8 ± 1 

Ash content (%, wet basis) 3.0 ± 0.4 7.3 ± 1 

TC (%, wet basis) 83.1 ± 5.6 85.3 ± 1.7 

TN (%, wet basis) 1.1 ± 0.1 0.8 ± 0.1 

BET surface areas (m2/g) 278.9 ± 0.6 295.1 ± 0.44 

PV (cm3/g) 0.079 ± 0.002 0.083 ± 0.002 

https://en.wikipedia.org/wiki/Adsorption
https://en.wikipedia.org/wiki/Gas
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Solid
https://en.wikipedia.org/wiki/Surface_science
https://en.wikipedia.org/wiki/Specific_surface_area
https://en.wikipedia.org/wiki/Specific_surface_area
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Surface 

Floor 

Grow end Brood end 

Windrow  

Windrow  

Windrow  
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Figure 2. Diagram of temperature sensor installation in the windrows 
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3.2.2 Bench scale simulative windrowing 

Litter samples were collected from the commercial broiler house in the same farm, 

immediately after in-house windrowing was initiated so that a completely mixed, uniform litter 

sample could be collected. Samples were collected using sealed plastic containers to prevent 

moisture loss prior to performing bench scale simulated windrowing experiments. The initial 

moisture content of the litter samples were measured by drying litter subsamples for 24h at 221

℉(105℃), both prior to and during bench scale simulative windrowing.  

Five-gallon polyethylene buckets were used to simulate windrow core heating (Figure 2). 

Two 6in x 6in (15cm x 15cm) openings were cut out and screened on opposite sides of bucket 

to promote oxygen transfer. The size of the air transfer window approximated the surface area 

to volume ratio of a commercial production house windrow (1.4 ft2/ft3 or 6 m2/m3), with a width 

of 12 ft (3.6m) and height of 1.5 ft (0.45m). Fiberglass insulation batts (R19) were placed on 

the side and top surface of the bucket to simulate litter insulating the core of a windrow. The 

insulated buckets were filled with litter to a 1ft depth.  

Seven treatments were conducted in pairs. The first treatment received no biochar and was 

taken as control. Subsequent treatments included litter mixed with PP and CL biochar at 1, 5 

and 10% (dry weight basis). Two simulative windrow heating events were monitored. After 5 

days of simulative windrowing, litter was removed from the bucket and the moisture content 

was measured. One group of 7 treatments was immediately placed back into the bucket to 

further monitor heating performance. A second paired group of the 7 treatments had the 

moisture content adjusted to 36% [49], then the litter was placed back into buckets to further 
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monitor heating performance.  

Temperature was measured in the buckets using duplicate type T thermocouples. 

Temperature data was collected using a Campbell Scientific data logger specify model 1# every 

30 minutes. The temperature sensors were placed 6in (15cm) depth from the top surface of 

litter (Figure 3).  
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Figure 3. Diagram of container used to simulate litter windrow core heating. 
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3.3 Results 

3.3.1 Peak temperature  

In the farm scale study, windrow peak temperature varied significantly at the three 

depths (Kruskal-Wallis test, p < 0.001) (Figure 4). The peak temperature data did not follow 

normal distribution, therefore we used the non-parametric method to compare the median of 

peak temperature data. However, there was no significant difference in windrow peak 

temperature between the Brood and Grow ends of the production houses. A Duncan’s 

Multiple Comparison test indicated that the peak temperatures at mid-depth (128 ± 26℉) was 

significant higher than the floor peak temperatures (119 ± 21℉). The surface had the poorest 

heating performance (103 ± 21℉), with the lowest peak temperature compared to the floor 

and mid-depth. The median of peak temperatures at mid-depth (median 145℉) and floor 

(median 128℉) exceeded one recommended threshold (122℉) for pathogen control. 

However, only the mid-depth position exceeded a higher threshold for pathogen control (145

℉). The peak surface temperatures (median 108℉) rarely exceeded 122℉. These findings 

indicate the exterior litter appears to insulate the interior litter, allowing the core location to 

reach higher peak temperature. Conversely, the floor peak temperature data indicated heat 

loss occurred to the ground by conduction, while the surface peak temperature data indicated 

conductive heat loss occurred to the house atmosphere. The surface temperature data in 

particular confirms that at least two windrow turns are needed to assure that the exposed litter 

will be turned into a new windrow interior and thus exposed to pathogen control temperature.  
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Figure 4. Boxplots of windrow peak temperature at different positions within the windrow 

(A) and windrow in the Brood and Grow ends of the houses (B).  

Data with the different letter (A, B, C) are significantly different (Duncan’s Multiple 

Comparisons, N=350, α=0.05).The two reference line show the temperature threshold of 122

℉and 145℉.  

B 

B 
A 

C 
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Windrow peak temperature declined after the litter windrows were turned (Kruskal-

Wallis test, p < 0.001) (Figure 5). At all three positions (mid-depth, floor, and surface), Turn 

1 (142 ± 9℉) had higher peak temperature than Turn 2 (125 ± 15℉); Turn 2 had higher peak 

temperature than Turn 3 (87 ± 20℉) (Duncan’s Multiple Comparisons, p < 0.05). The 

median of peak temperatures of both mid-depth and floor can reach and exceed 122℉ in 

Turn 1 and Turn 2. However, the median peak temperatures in the Turn 3 did not exceed 122

℉. 

3.3.2 Biochar effects 

Windrow peak temperature did not vary across the four treatment houses and across the 

four growouts (Figure 6) Kruskal-Wallis test, p = 0.726. Thus, in this study biochar did not 

improve the peak temperature during windrowing. The lack of a treatment effect may because 

of the biochar application (1% dry basis) in this study was too low to improve windrowing.  

It indicated that maybe need increase the amount of biochar amendment to evaluate the 

improvement of biochar to windrowing heating performance in farm scale study
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In each position, the peak temperature are different (Duncan’s Multiple Comparisons). The result of Growout 2-4 were same with Growout 1. 
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B 

C 
C 

C 

B 

B 

A 

A 

Figure 5. Boxplots of windrow peak temperature across turning events at three positions of Growout 1.  
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.  

Figure 6. Boxplots of windrow peak temperature between treatments at three positions in the Turn 1 of Growout 1.  

There is no difference between the median of the peak temperature the four treatments (Kruskal-Wallis test, p = 0.726). The result was same 

with other windrow events. 
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3.3.3 Moisture and windrow size effects  

A correlation analysis was completed to determine whether heating performance 

at the farm scale was related to litter moisture and windrow size among other factors 

(Table 4). The strength of correlations was defined with the |r| value. When |r| was 

0.1~ 0.29, the two variables show low strength correlation. When |r| was 0.30~ 0.49, 

the two variables show medium strength medium strength correlation. When |r| was 

0.50 ~ 1, the two variables strong correlation (Pallant, 2013). Results in Table 4 

shows that the peak temperature was highly correlated to the turn event, and moisture 

content (t-test, p <0.01). The litter moisture content in litter was highly correlated to 

the turn events (coefficient: -0.679, p <0.01) Windrow depth showed a small 

correlation to heating performance, but had a significant small correlation to peak 

temperature (coefficient: 0.256, p =0.016).  

A multiple regression analysis of peak temperature was conducted using the best 

subset method with SPSS V25. Moisture content and depth were used as independent 

variables. Through the correlation analysis, these two detected factors show the most 

significant effects on peak temperature. Using a linear multiple regression model to fit 

the peak temperature at floor and mid-depth with moisture content and windrow 

depth, the two models can explain 48~50% of the increase of peak temperature (R2= 

0.50, 0.48, p< 0.001) (Table 4). The regression model also estimate the parameter 

coefficients of moisture and windrow depth, as well as corresponding standard errors, 

t-statistics, and p-levels (Table 5). The estimated regression model at Floor is: 

Peak Temperature = 21.44 + 2.193*Moisture Content (%) + 1.864*Depth (in)         

(1) 

Adjusted R2=0.50.  
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Table 4. Pearson correlation analysis of peak temperature and variables in the study 

 

 

 

 

 

 

 

 

 

 

 

 

 

*. Correlation is significant at the 0.05 level (2 - tailed); **. Correlation is significant at the 0.01 level (2 - tailed), N = 350, α= 0.05

  Treatment Turn Moisture content  Depth Peak temperature 

Treatment  0.020 -0.234 -0.012 -0.151 

Turn 0.020  -0.679** -0.075 -0.648** 
Moisture 

content  -0.234 -0.679**  0.043 0.582* 

Depth -0.012 -0.075 0.043  0.256* 

Peak 

temperature -0.151 -0.648** 0.582* 0.256*  
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The estimated regression model at Floor is: 

Peak Temperature = 7.45 + 2.622*Moisture Content (%) + 5.083*Depth (in)          (2) 

Adjusted R2=0.48. 

Parameters in equation (1) and (2) have positive values, indicating the increase in the 

average peak temperature with moisture content and windrow depth at floor and mid-depth. 

At both the floor and mid-depth positions, peak temperature increased significantly as the 

windrow depth increased. Larger (deeper) windrows tended to produce higher peak 

temperatures, and the amount of compost exposed to high temperatures would also increase. 

Peak temperature declined as the moisture content decreased. 

3.3.4 Pathogen reduction standard  

Temperatures of ≥122℉lasting for 24h or ≥145℉lasting for 1h were used as standards 

to assess the adequacy of windrow heating for pathogen reduction [62]. For both mid-depth 

and floor, when the temperature reached 122℉, 88% of temperature data at floor met 

temperatures≥122℉for 24h in Turn 1, and 47% of temperature data met the standard in Turn 

2. 92% of peak temperature data at mid-depth can met temperatures≥122℉for 24h in Turn 1, 

and 58% of temperature data met in Turn 2 (Figure 7). Only the mid-depth temperature data 

can reach 145℉ and maintain the temperature for 1hrs in Turn 1 and Turn 2 (Figure 8). 92% 

of peak temperature data at mid-depth can met temperature≥145℉ last for 1hr in Turn 1, and 

33% of temperature data met in Turn 2. Less than 5% of the temperature data at floor met the 

temperatures≥145℉ for 1hr in the Turn 1, and none of temperature data at floor reached 145

℉in Turn 2.  
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Table 5. The analysis of variance of a linear multiple regression at floor and mid-depth 

 

 

 

**Coefficient is significant at the 0.01 level (2 - tailed) 

Table 6. Parameter estimates of the two variables linear regression model at floor and mid-depth 

 

 

 

 

 

** Coefficient is significant at the 0.01 level (2 - tailed) 

Model Sum of Squares df 
Mean 

Square 
F p-value 

Floor 

Regression 29835.111 2 14917.6 67.33 0.000** 

Residual 29467.355 133 221.559     

Total 59302.466 135       

 

Mid-depth 

Regression 43087.848 2 21543.9 62.948 0.000** 

Residual 45177.165 132 342.251     

Total 88265.013 134       

Model 
Coefficients 

t p-value 
Beta Std. Error 

Floor 

(Constant) 21.444 8.933 2.401 0.018 

Moisture 2.193 0.233 9.405 0.000** 

Depth 1.864 0.504 3.699 0.000** 

Mid-depth 

(Constant) 7.449 11.204 0.665 0.507 

Moisture 2.622 0.289 9.085 0.000** 

Depth 5.083 1.173 4.332 0.000** 
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Compared the total time cost to meet the goal (time to reach the temperature threshold 

plus the required time duration) for the two pathogen control temperature in Turn 1 and 2. A 

Nonparametric test was used compare the medians of time duration to reach temperature 

≥122℉ for 24h at floor (Figure 9). At floor Turn 1 took 68h (median of temperature data) to 

reach the goal, while Turn 2 was significant shorter than in Turn 1 with 59h (p = 0.008). At 

mid-depth, the median time to meet the goal of 122℉were 42h in Turn 1 and 33h in Turn 2; 

the median time to meet the goal of 145℉were 36h in Turn 1 and 19h in Turn 2. The results 

also showed that the time duration to reach the temperature thresholds in Turn 2 was shorter 

then in Turn 1 (p = 0.043, p<0.001). It indicates that temperature before turning can affect the 

time duration to reach the temperature standard in next turn. The higher temperature of the 

windrow before taking a turn, less time cost to reach the pathogen reduction temperature in 

next turn.  
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Figure 7. Boxplot of the time duration of temperature ≥122℉ in three depths.  

The dashed reference line shows the required time duration of pathogen reduction (1h). 

 

 

Figure 8. Boxplot of the time duration of temperature ≥145℉ in three depths.  

The dashed reference line shows the required time duration of pathogen reduction (24h). 
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Figure 9. Boxplot of the time duration to reach the pathogen reduction standard.  

The time 122 is the time to reach 122℉+24h; The time145 is the time to reach 145℉+1h. 

Paired sample t-test to compare the time duration. 
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3.3.5 Biochar effect on simulative windrowing 

In the bench scale study, both CL biochar and PP biochar treated mixture show significant 

effects on peak temperature and heating rate during the simulative windrowing (Tukey 

HSD, p < 0.001). Both biochar treatments did not improve the heating performance (Table 7). 

The control with no biochar amendment had a higher peak temperature (143℉) and higher 

fastest heating rate (6℉/h). Both biochars at the 1% amendment rate show no significant 

difference of the peak temperature with control (~145℉), while the fastest heating rate was 

0.7~0.9℉/h lower than control treatment. All three treatments reached 122℉in 7~7.5h and 

maintain the temperature ≥122℉ for more than 50h. 

Higher biochar amendment rates (5% and 10%) showed negative effects on heating 

performance. The peak temperature of 5% and 10% biochar treatments was significantly lower 

than the peak temperature of control (Tukey HSD, p < 0.001), except for the CL biochar 10% 

treatment. It also took longer for these higher amendment treatments to reach 122℉ (8~16.5h) 

and maintain a shorter period time to temperature ≥122℉ (22.5~46.5h).  

The CL biochar showed different heating performance with the PP biochar, especially at 

the 5% and 10% amendment rates. The main difference between these two biochar is the 

moisture content. CL biochar has much higher moisture content than PP biochar (Table 3). 

This indicates that the moisture content of biochar itself might have effect on heating 

performance.
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Table 7. Parameters in first simulative windrow heating turn 

 

 

 

 

 

 

 

 

 

 

The standard error of time Temperature ≥ 122℉ and Time to 122℉ are ± 0.5hr. The one-way ANOVA test the maximum data of 4 temperature 

sensors of each treatment. 

 

Treatment 

Peak 

Temperature,℉ 

Time 

Temperature ≥ 

122℉, h 

Time to 122

℉, h 

Initial MC,% 

wet basis 

Final MC,% 

wet basis 

Fastest 

heating rate, 

℉/h 

PP biochar 10% 131 ±0.4c 27.5 15.5 32.5 27 2.0d 

PP biochar 5% 128 ±0.03d 22.5 16.5 31.5 27 2.5d 

PP biochar 1% 145 ±0.1a 53 7 32 31 5.3b 

Control 143 ±1.0ab 59.5 7.5 32 32 6.2a 

CL biochar 10% 140 ±0.1b 46.5 14 32 27 4.0c 

CL biochar 5% 132 ±0.3c 31.5 8.5 32 30 4.0c 

CL biochar 1% 145±0.05a 52.5 7.5 31.5 30 5.5b 
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3.3.6 Moisture addition to second windrow turn 

For turn 2, the moisture content of half the buckets was adjusted to 36% moisture. This 

induced an effect on the heating performance (Wilcoxon signed rank test, p < 0.01). All of the 

buckets with moisture addition, except for the CL biochar 10%, had much higher peak 

temperature and heating rate than the buckets that did not have moisture added (Table 8). For 

those samples with moisture added, the control treatment showed the best heating performance, 

higher peak temperature (143℉), reaching 122℉ within 18hrs and maintaining it for 39.5h. 

For PP biochar, when the moisture content adjusted to 36%, 10% amendment rate PP biochar 

showed higher peak temperature (142℉) than 5% and 1% amendment rates (139℉and 111℉), 

and a close time to reach 122℉and period time of temperature ≥122℉with control (20h and 

35.5h). For CL biochar, when the moisture content adjusted to 36%, CL 1% and 5% 

amendment rates treatment took longer to reach 122℉(23.5~40.5h) and maintain it with shorter 

period (28.5~33.5h). The results show that both CL and PP biochar show no improvement of 

heating performance either with or without water adjustments in second simulative windrowing. 

Additional moisture added into litter mixture improve the heating performance, both peak 

temperature and heating rate (Figure 10 and 11). In contrast to treatments water added, the CL 

biochar 10% treatment stopped heating after moisture content was adjusted higher. However, 

this sample generated sulfurous odors indicating anaerobic conditions. 
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Table 8. Parameters in second simulative windrow heating turn 

Treatment 

Peak 

Temperature ,

℉ 

 

Time to 

122℉, h 

Time 

Temperature 

≥ 122℉ ,h 

Initial 

MC ,% 

wet basis 

Final 

MC ,% 

wet basis 

 

Fastest 

heating 

rate, ℉

/h 

PP biochar 

10%  

142  20.5 35.5 36 34 4.3 

95  - - 27 26 0.7 

PP biochar 

5%  

139  17 34.5 36 35 4.4 

98  - - 27 27 0.8 

PP biochar 

1%  

111  - - 36 34 1.4 

81  - - 31 30 0.5 

Control  
143  17.5 39.5 36 35 4.0 

108  - - 32 30 1.0 

CL 

biochar 

10%  

88  - - 36 35 0.6 

145  
22.5 

38 27 26 
5.0 

CL 

biochar 

5%  

133  23.5 28.5 36 34 3.0 

86  
- 

- 30 29 
0.3 

CL 

biochar 

1%  

134  40.5 33.5 36 35 2.7 

85 ± 0.0 
- 

- 30 29 
0.4 

 The standard error of time Temperature ≥ 122℉ and Time to 122℉ are ± 0.5h.   
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Figure 10. Error bar (standard error) of the peak temperature of the group with and without 

water adjustment, except the CL biochar 10% treatment.  

 

 

 

 
Figure 11. Error bar (standard error) of the heating rate of the group with and without water 

adjustment, except the CL biochar 10% treatment. 



www.manaraa.com

38 

  

3.4 Discussion  

This study did not indicate that biochar improves windrow heating performance both in 

farm and bench scale study. This finding is inconsistent with previous studies which have 

indicated that biochar can improve compost heating performance [5, 64]. However, these 

pervious studies did not evaluate biochar effectiveness for litter windrowing. Wei et al., 2014, 

showed that 1% biochar application increased 13% of peak temperature. In their study, they 

mixed chicken manure and tomato stalk, and adjusted the C/N ratio of to around 25/1; the water 

content to 60%. Jindo et al., 2011, showed that 10% wood biochar application raised the 

temperature with 7%. In their study, they mixed the poultry litter with apple pomace, rice straw, 

and rice bran to adjust the C/N ratio, and maintained the moisture content at around 60% by 

adding water. Compare to composting research, the in-house windrowing does not adjust the 

C/N ratio and moisture content before windrowing. Biochar failed to improve the windrow 

heating performance may because of the limited condition of litter for microbial organisms. 

Generally, for microbial organisms need C/N ratio about 25:1 to 30:1 and moisture content 

about 50-60% in composting [65-67]. Biochar improved the heating performance mainly by 

offering a habitat for microbial organisms [64]. When the windrow condition limits the 

activities of microbes, the effect of biochar might also be limited. The initial moisture content 

in our study was about 30~40 %, which lower than composting study, which may limit 

microbial activities. It indicated that biochar did not work effectively when the moisture content 

of windrow mixture is low. 
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Moisture is a key factor that influences windrow heating performance, especially the 

peak temperature. A higher moisture content was correlated to higher peak temperature both 

in farm and bench study. The peak temperature decreased across the turning events, largely 

due to the moisture content reduction. During windrowing, moisture level would reduce due 

to evaporation and the self-heating during the thermophilic phase, especially at the surface 

[68]. Water loss through the drying process significantly lowers the peak composting 

temperature which may increase the potential of the survival bacterial pathogen survival [69]. 

Peak temperature increased, at the mid-depth and floor positions with the windrow depth. 

The result indicate the large windrow size can improve heating performance. A previous 

study showed that windrow size directly affects the amount of compost exposed to high 

temperatures, and the large windrows have higher temperatures as compared to smaller 

windrows [70]. The large windrows have a lower surface area to volume ratio, which relates 

to less heat loss and higher composting temperature [71]. With the same width and length, the 

temperature in larger windrows (6.5ft or 2m height) were significantly two times higher (p < 

0.05) than those observed in smaller windrows (3.3ft or 1m height) [70].  

Litter windrowing should be effective, safe and fast. The standard of ≥122℉for 24h and 

≥145℉for 1h [62] takes less time compared a previously used standard of 131℉for 3-5 days 

[49]. There has been little research using 122℉for 24h or ≥145℉for 1hr as temperature 

standard in composting. A broiler litter windrow study used 122℉for 24h, and 131℉for 4h 

as temperature goal and compared the spatially temperature[36]. This study showed the 

results that when core area reach 122℉for 24h, 81±4% of the windrow area can reach 122℉, 
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while when the core reach 131℉for 4h, only 38 ±11% of the windrow area can reach 131℉. 

This shows that relative low temperature standard can easier to reach at most area of the 

windrow. These similar results were obtained in our farm scale study. The145℉for 1h took 

less time to achieve only at the mid-depth area position. The 122℉for 24h standard was met 

in the most area of windrow, and may be a better indicator of the process of the pathogen 

reduction. Based on the standard of 122℉last for 24h, the farmers are suggested to turn the 

windrow every 3 days (Figure 9). 
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Chapter 4. Conclusions and recommendations 

1. Biochar application did not improve windrow heating performance when added to 

broiler litter at 1%, 5%, or 10% rate. 

2. Moisture content is critical for windrow heating. Higher initial moisture content yielded 

better heating performance. This suggests that broiler producers should windrow 

immediately after flocks are harvested, when the moisture content in litter is the highest. 

3. Larger windrows provide better windrow heating performance. Broiler producers 

should form larger windrows for better heating, and this will prevent premature drying 

that occurs in small windrows.  

4. Based on the pathogen reduction standard of 122℉lasting for 24h, broiler producers 

are suggested to turn the windrow every 3 days, 2-3 times. 
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